

Must Love Data

Remaking your Annual Fund
Using Analytics and Predictive Modeling

Whitney Museum of American Art

- Opening a new building in the Meatpacking District in spring 2015
- Preparing for substantial growth in attendance and membership

The Art Institute of Chicago

 1.4 million visitors annually

100,000 members

TripAdvisor winner: #1 museum in the world

Annual Fund

An unrestricted gift above and beyond a membership

Fully tax deductible

 Not as large a revenue stream as membership, but still significant

Data Mining and Predictive Modeling

- Data mining: any activity that involves exploring large data sets for patterns or to answer specific questions (which may or may not have anything to do with predicting behavior)
- Predictive modeling: the creation of formulas that produce scores for each constituent in a dataset for the purpose of predicting that constituent's probability of engaging in a certain behavior (eg., giving to the Annual Fund).

Source: http://cooldata.wordpress.com/2010/02/25/data-mining-and-predictive-modeling-whats-the-difference/

Predictive Modeling: Possible Approaches

Predictive Modeling: Possible Approaches

<u>Approach</u>	<u>Strengths</u>	PROS	CONS
Send data out for scoring	TimeMoney	 Quick –smallest time investment Allows you to start testing/leveraging findings rapidly 	 Blackbox – can't replicate Doesn't leverage internal knowledge base
Create models internally (software/cons ulting solution)	MoneyQuality	 Build skills in-house Software is multipurpose Replicable for future models 	 Slow – largest time investment Steepest learning curve
Hire a statistician	TimeQuality	 High degree of quality, reliability of results Quicker than building 	 Potentially costly Outside person must build institutional knowledge

Case Study: Whitney Museum

 How do we grow the annual fund when we are asking a lot of our most loyal supporters?

Challenges:

- Same approach for many years
- Not identifying enough new donors
- Not effectively renewing AF donors

Case Study: Whitney Museum

- Data Mining Getting to know our audience
 - Challenge: Need to grow the AF when we have decreasing access to our best donors.
 - Ah ha moment!: 83% of our revenue coming from 17% of donors; less and less available for asks.
 - What to do: Start "renewing" donors as we would members; strategize with MGOs about timing and confirm at start of FY.
 - Results: Far less time spent reviewing this audience; improved consistency of giving YoY. Anticipated shortfalls that could be made up elsewhere when donors go offline.

Case Study: Whitney Museum

- Predictive Modeling
 - Goal: identify new donors as our access to existing donors decreases
 - Model: Likelihood to give
 - Results:
 - 56% of solicited revenue came from top decile
 - 62% of new donors were rated 1-3
 - Only 6% of revenue came from deciles 5-10; represented a more significant portion of mail file.
 - Actionable Next Steps: Stop mailing anyone rated 5+; reduce mail quantities. Ramp up mailing to top deciles. Identify lookalikes from other source lists.

Case Study: the Art Institute

How can we increase net revenue?

- Challenges:
 - Revenue varied significantly each year
 - Costs were rising
 - Tactics had changed every year: no control

Case Study: the Art Institute

- Data Mining
 - Challenge: messy data
 - Timeline: eight months
 - Revelation: solicited revenue was remarkably consistent; variability came from unsolicited revenue
 - Actionable Conclusion: our greatest opportunity to increase net was controlling expenses

Case Study: the Art Institute

- Predictive Modeling
 - Goal: reduce mailing sizes
 - Two models:
 - Likelihood to give
 - Size of gift
 - Strong results:
 - 38.8% higher net revenue vs control
 - 11.8% increase in overall net Y/Y

Getting Started

- Data mining and building basic business intelligence
 - Examples of what you can do right now

- Deciding to try data mining
 - Low tech to high tech
 - Making the case

Step 1: Frame the Project

- What are you trying to achieve?
- What is the question you want to answer?
- What is your key metric and how are you measuring it?
- Who needs to be involved?
- What does success look like?
- What are your limitations?

Step 2: Clean Your Data

- Make sure your data is consistently labeled, formatted, etc.
- High tech: taskforce, global changes
- Low tech: manual corrections

 Not recommended: normalizing the data set but not the content of the database

Step 3: Brainstorm

 Generate a list of all possible variables that might influence your key metric and generate a data set

 High tech: connect directly into backend tables; build refreshable reports and bridge systems

Low tech: basic query and excel work

Step 4: Identify Correlations - Data Mining

Determine which factors from your brainstorm parallel your key metric

 High tech: invest in a tool that runs these analyses for you

Low tech: filters, pivot tables

Step 4: Identify Correlations - Predictive Modeling

- Determine which factors from your data mining parallel your key metric
- High tech: statistical methods including multivariate regressions, principle component analyses, scoring
- Low tech: run regressions one by one in Excel

Step 5: Invoke Common Sense

Do your conclusions make sense?

Is it correlation or causation?

Which factors are actionable?

How do we test these conclusions?

Low Tech to High Tech

 Use low tech for some quick wins; let this make the case for investment in the high tech approach

 Set goals for what the high tech approach will actually achieve

Internal vs. external assets and investment

Analytics Addiction

 Comparing your results to the model and making adjustments

When do you stop?

Additional Resources

Become conversant:

- www.cooldata.wordpress.com
- The Upshot (NYT)
- Five Thirty Eight (formerly NYT now standalone)
- Data Science for Business by Foster Provost and Tom Fawcett